649 research outputs found

    Spinor and Isospinor Structure of Relativistic Particle Propagators

    Full text link
    Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent Îł\gamma-matrix structures. Similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field.Comment: 9 pages, Preprint IC/93/197 Triest

    Highly Scalable Algorithms for Robust String Barcoding

    Full text link
    String barcoding is a recently introduced technique for genomic-based identification of microorganisms. In this paper we describe the engineering of highly scalable algorithms for robust string barcoding. Our methods enable distinguisher selection based on whole genomic sequences of hundreds of microorganisms of up to bacterial size on a well-equipped workstation, and can be easily parallelized to further extend the applicability range to thousands of bacterial size genomes. Experimental results on both randomly generated and NCBI genomic data show that whole-genome based selection results in a number of distinguishers nearly matching the information theoretic lower bounds for the problem

    Nonadiabatic charged spherical evolution in the postquasistatic approximation

    Full text link
    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in General Relativity. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstr\"om exterior solution. Two models are considered: i) a Schwarzschild-like shell in the diffusion limit; ii) a Schwarzschild-like interior in the free streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.Comment: 11 pages, 16 Figures. Accepted for publication in Phys Rev

    Applications of vortex gas models to tornadogenesis and maintenance

    Get PDF
    Processes related to the production of vorticity in the forward and rear flank downdrafts and their interaction with the boundary layer are thought to play a role in tornadogenesis. We argue that an inverse energy cascade is a plausible mechanism for tornadogenesis and tornado maintenance and provide supporting evidence which is both numerical and observational. We apply a three-dimensional vortex gas model to supercritical vortices produced at the surface boundary layer possibly due to interactions of vortices brought to the surface by the rear flank downdraft and also to those related to the forward flank downdraft. Two-dimensional and three-dimensional vortex gas models are discussed, and the three-dimensional vortex gas model of Chorin, developed further by Flandoli and Gubinelli, is proposed as a model for intense small- scale subvortices found in tornadoes and in recent numerical studies by Orf et al. In this paper, the smaller scales are represented by intense, supercritical vortices, which transfer energy to the larger-scale tornadic flows (inverse energy cascade). We address the formation of these vortices as a result of the interaction of the flow with the surface and a boundary layer.Comment: 20 pages, 6 figure

    Time and length scales of autocrine signals in three dimensions

    Get PDF
    A model of autocrine signaling in cultures of suspended cells is developed on the basis of the effective medium approximation. The fraction of autocrine ligands, the mean and distribution of distances traveled by paracrine ligands before binding, as well as the mean and distribution of the ligand lifetime are derived. Interferon signaling by dendritic immune cells is considered as an illustration.Comment: 15 page

    Dilution of zero point energies in the cosmological expansion

    Full text link
    The vacuum fluctuations of all quantum fields filling the universe are supposed to leave enormous energy and pressure contributions which are incompatible with observations. It has been recently suggested that, when the effective nature of quantum field theories is properly taken into account, vacuum fluctuations behave as a relativistic gas rather than as a cosmological constant. Accordingly, zero-point energies are tremendously diluted by the universe expansion but provide an extra contribution to radiation energy. Ongoing and future cosmological observations could offer the opportunity to scrutinize this scenario. The presence of such additional contribution to radiation energy can be tested by using primordial nucleosynthesis bounds or measured on Cosmic Background Radiation anisotropy.Comment: 8 pages, no figures. Submitted the 17th of March to Modern Physics Letters
    • …
    corecore